102 research outputs found

    Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training

    Get PDF
    Background: The importance of concurrent exercise order for improving endurance and resistance adaptations remains unclear, particularly when sessions are performed a few hours apart. We investigated the effects of concurrent training (in alternate orders, separated by ~3 hours) on endurance and resistance training adaptations, compared to resistance-only training. Materials and methods: Twenty-nine healthy, moderately-active men (mean ± SD; age 24.5 ± 4.7 y; body mass 74.9 ± 10.8 kg; height 179.7 ± 6.5 cm) performed either resistance-only training (RT, n = 9), or same-day concurrent training whereby high-intensity interval training was performed either 3 hours before (HIIT+RT, n = 10) or after resistance training (RT+HIIT, n = 10), for 3 d.wk-1 over 9 weeks. Training-induced changes in leg press 1-repetition maximal (1-RM) strength, countermovement jump (CMJ) performance, body composition, peak oxygen uptake (VO2 peak), aerobic power (W peak), and lactate threshold (W LT) were assessed before, and after both 5 and 9 weeks of training. Results: After 9 weeks, all training groups increased leg press 1-RM (~24–28%) and total lean mass (~3-4%), with no clear differences between groups. Both concurrent groups elicited similar small-to-moderate improvements in all markers of aerobic fitness (VO 2 peak ~8–9%; W LT ~16-20%; W peak ~14-15%). RT improved CMJ displacement (mean ± SD, 5.3 ± 6.3%), velocity (2.2 ± 2.7%), force (absolute: 10.1 ± 10.1%), and power (absolute: 9.8 ± 7.6%; relative: 6.0 ± 6.6%). HIIT+RT elicited comparable improvements in CMJ velocity only (2.2 ± 2.7%). Compared to RT, RT+HIIT attenuated CMJ displacement (mean difference ± 90%CI, -5.1 ± 4.3%), force (absolute: -8.2 ± 7.1%) and power (absolute: -6.0 ± 4.7%). Only RT+HIIT reduced absolute fat mass (mean ± SD, -11.0 ± 11.7%). Conclusions: In moderately-active males, concurrent training, regardless of the exercise order, presents a viable strategy to improve lower-body maximal strength and total lean mass comparably to resistance-only training, whilst also improving indices of aerobic fitness. However, improvements in CMJ displacement, force, and power were attenuated when RT was performed before HIIT, and as such, exercise order may be an important consideration when designing training programs in which the goal is to improve lower-body power. © 2020 Lee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Optimisation of classification methods to differentiate morphologically-similar pollen grains from FT-IR spectra

    Get PDF
    A growing body of research is demonstrating the potential of Fourier-Transform Infrared spectroscopy (FT-IR) to identify and differentiate morphologically similar pollen taxa. The Poaceae (grass) family is a large and complex with morphologically similar pollen grains. It is not possible to use traditional light microscopy to differentiate Poaceae species, or genus, based on pollen morphological characteristics. This research presents a study of five species from the Poaceae family found across a wide variety of different moorland vegetation communities, to test the extent to which FT-IR microspectroscopy can be used to separate and identify these species and develop statistical approaches for the analyses of these data. Moorland grasses are of particular importance to assess conservation status and baselines in fragile and scarce vegetation communities, whose vegetation composition in the past remains cryptic owing to low taxonomic resolution. Non-differentiated and second derivative spectra were combined with Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) to determine whether species had different chemical compositions and would cluster. Decision trees and random forest were used to classify each species and demonstrated 100% successful classification rate. This success demonstrates that using FT-IR microspectroscopy alongside spectral pre-processing and multivariate analysis can successfully identify and separate these moorland Poaceae species and has the clear potential to improve taxonomic resolution and classification of fossil pollen records. This will improve our understanding of how past land-use practice has shaped upland communities, provide more detailed ecologically-relevant palaeoecological information, and be utilised for the restoration and conservation of upland habitats

    Asymmetric synthesis of heterocyclic chloroamines and aziridines by enantioselective protonation of catalytically generated enamines

    Get PDF
    L.A.M. and J.W.B.F. thank EPSRC for postdoctoral funding (EP/S027165/1; EP/R025754/1). J.W.B.F. thanks the Leverhulme Trust for postdoctoral funding (RPG-2018-362). M.W.A. thanks the University of St Andrews for a PhD studentship.We report a method for the synthesis of chiral vicinal chloroamines via asymmetric protonation of catalytically generatedprochiral chloroenamines using chiral Brønsted acids. The processis highly enantioselective, with the origin of asymmetry and catalystsubstituent effects elucidated by DFT calculations. We show theutility of the method as an approach to the synthesis of a broadrange of heterocycle-substituted aziridines by treatment of thechloroamines with base in a one-pot process, as well as the utility ofthe process to allow access to vicinal diamines.Publisher PDFPeer reviewe

    Synthesis of 2-BMIDA indoles via heteroannulation : applications in drug scaffold and natural product synthesis

    Get PDF
    G.E.B. thanks the EPSRC and GSK for a PhD studentship. J.W.B.F. thanks the Leverhulme Trust for postdoctoral funding (RPG-2018-362).A Pd-catalyzed heteroannulation approach for the synthesis of C2 borylated indoles is reported. The process allows access to highly functionalized 2-borylated indole scaffolds with complete control of regioselectivity. The utility of the process is demonstrated in the synthesis of borylated sulfa drugs and in the concise synthesis of the Aspidosperma alkaloid Goniomitine.Publisher PDFPeer reviewe

    Effect of Narrow Spectrum Versus Selective Kinase Inhibitors on the Intestinal Proinflammatory Immune Response in Ulcerative Colitis

    Get PDF
    Background: Kinases are key mediators of inflammation, highlighting the potential of kinase inhibitors as treatments for inflammatory disorders. Selective kinase inhibitors, however, have proved disappointing, particularly in the treatment of rheumatoid arthritis and inflammatory bowel disease. Consequently, to improve efficacy, attention has turned to multikinase inhibition. Methods: The activity of a narrow spectrum kinase inhibitor, TOP1210, has been compared with selective kinase inhibitors (BIRB-796, dasatinib and BAY-61-3606) in a range of kinase assays, inflammatory cell assays, and in inflamed biopsies from patients with ulcerative colitis (UC). Effects on recombinant P38α, Src, and Syk kinase activities were assessed using Z-lyte assays (Invitrogen, Paisley, United Kingdom). Anti-inflammatory effects were assessed by measurement of proinflammatory cytokine release from peripheral blood mononuclear cells, primary macrophages, HT29 cells, inflamed colonic UC biopsies, and myofibroblasts isolated from inflamed colonic UC mucosa. Results: TOP1210 potently inhibits P38α, Src, and Syk kinase activities. Similarly, TOP1210 demonstrates potent inhibitory activity against proinflammatory cytokine release in each of the cellular assays and the inflamed colonic UC biopsies and myofibroblasts isolated from inflamed colonic UC mucosa. Generally, the selective kinase inhibitors showed limited and weaker activity in the cellular assays compared with the broad inhibitory profile of TOP1210. However, combination of the selective inhibitors led to improved efficacy and potency in both cellular and UC biopsy assays. Conclusions: Targeted, multikinase inhibition with TOP1210 leads to a broad efficacy profile in both the innate and adaptive immune responses, with significant advantages over existing selective kinase approaches, and potentially offers a much improved therapeutic benefit in inflammatory bowel disease

    Causes of differences in model and satellite tropospheric warming rates

    Get PDF
    In the early twenty-first century, satellite-derived tropospheric warming trends were generally smaller than trends estimated from a large multi-model ensemble. Because observations and coupled model simulations do not have the same phasing of natural internal variability, such decadal differences in simulated and observed warming rates invariably occur. Here we analyse global-mean tropospheric temperatures from satellites and climate model simulations to examine whether warming rate differences over the satellite era can be explained by internal climate variability alone. We find that in the last two decades of the twentieth century, differences between modelled and observed tropospheric temperature trends are broadly consistent with internal variability. Over most of the early twenty-first century, however, model tropospheric warming is substantially larger than observed; warming rate differences are generally outside the range of trends arising from internal variability. The probability that multi-decadal internal variability fully explains the asymmetry between the late twentieth and early twenty-first century results is low (between zero and about 9%). It is also unlikely that this asymmetry is due to the combined effects of internal variability and a model error in climate sensitivity. We conclude that model overestimation of tropospheric warming in the early twenty-first century is partly due to systematic deficiencies in some of the post-2000 external forcings used in the model simulations

    Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations

    Get PDF
    Transcription disequilibria are characteristic of many neurodegenerative diseases. The activity-evoked transcription of immediate early genes (IEGs), important for neuronal plasticity, memory and behavior, is altered in CNS diseases and governed by epigenetic modulation. KDM1A, a histone 3 lysine 4 demethylase that forms part of transcription regulation complexes, has been implicated in the control of IEG transcription. Here we report the development of vafidemstat (ORY-2001), a brain penetrant inhibitor of KDM1A and MAOB. ORY-2001 efficiently inhibits brain KDM1A at doses suitable for long term treatment, and corrects memory deficit as assessed in the novel object recognition testing in the Senescence Accelerated Mouse Prone 8 (SAMP8) model for accelerated aging and Alzheimer's disease. Comparison with a selective KDM1A or MAOB inhibitor reveals that KDM1A inhibition is key for efficacy. ORY-2001 further corrects behavior alterations including aggression and social interaction deficits in SAMP8 mice and social avoidance in the rat rearing isolation model. ORY-2001 increases the responsiveness of IEGs, induces genes required for cognitive function and reduces a neuroinflammatory signature in SAMP8 mice. Multiple genes modulated by ORY-2001 are differentially expressed in Late Onset Alzheimer's Disease. Most strikingly, the amplifier of inflammation S100A9 is highly expressed in LOAD and in the hippocampus of SAMP8 mice, and down-regulated by ORY-2001. ORY-2001 is currently in multiple Phase IIa studies

    Modulation of KDM1A with vafidemstat rescues memory deficit and behavioral alterations

    Get PDF
    Transcription disequilibria are characteristic of many neurodegenerative diseases. The activity-evoked transcription of immediate early genes (IEGs), important for neuronal plasticity, memory and behavior, is altered in CNS diseases and governed by epigenetic modulation. KDM1A, a histone 3 lysine 4 demethylase that forms part of transcription regulation complexes, has been implicated in the control of IEG transcription. Here we report the development of vafidemstat (ORY-2001), a brain penetrant inhibitor of KDM1A and MAOB. ORY-2001 efficiently inhibits brain KDM1A at doses suitable for long term treatment, and corrects memory deficit as assessed in the novel object recognition testing in the Senescence Accelerated Mouse Prone 8 (SAMP8) model for accelerated aging and Alzheimer's disease. Comparison with a selective KDM1A or MAOB inhibitor reveals that KDM1A inhibition is key for efficacy. ORY-2001 further corrects behavior alterations including aggression and social interaction deficits in SAMP8 mice and social avoidance in the rat rearing isolation model. ORY-2001 increases the responsiveness of IEGs, induces genes required for cognitive function and reduces a neuroinflammatory signature in SAMP8 mice. Multiple genes modulated by ORY-2001 are differentially expressed in Late Onset Alzheimer's Disease. Most strikingly, the amplifier of inflammation S100A9 is highly expressed in LOAD and in the hippocampus of SAMP8 mice, and down-regulated by ORY-2001. ORY-2001 is currently in multiple Phase IIa studies
    corecore